

Robust Marker Trajectory Repair for MOCAP using Kinematic Reference

Maksym Perepichka

maksym@perepichka.com Concordia University Montreal, Quebec, Canada

Sudhir P. Mudur sudhir.mudur@concordia.ca

Concordia University Montreal, Quebec, Canada

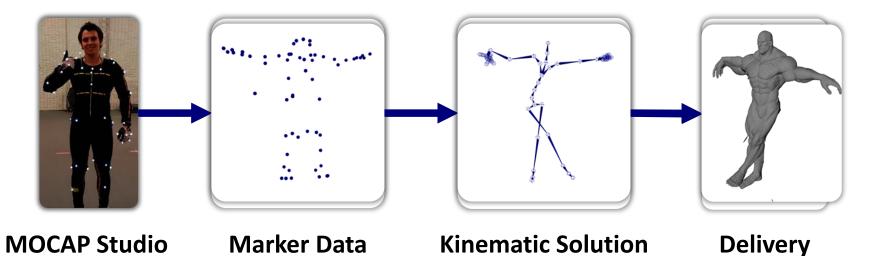
Daniel Holden

daniel.holden@Ubisoft.com Ubisoft La Forge Montreal, Quebec, Canada

Tiberiu Popa

tiberiu.popa@concordia.ca Concordia University Montreal, Quebec, Canada

Getting Animation Data for Games


- Keyframing
- MOCAP
 - Markerless
 - Markers
 - Active
 - Passive

Challenges

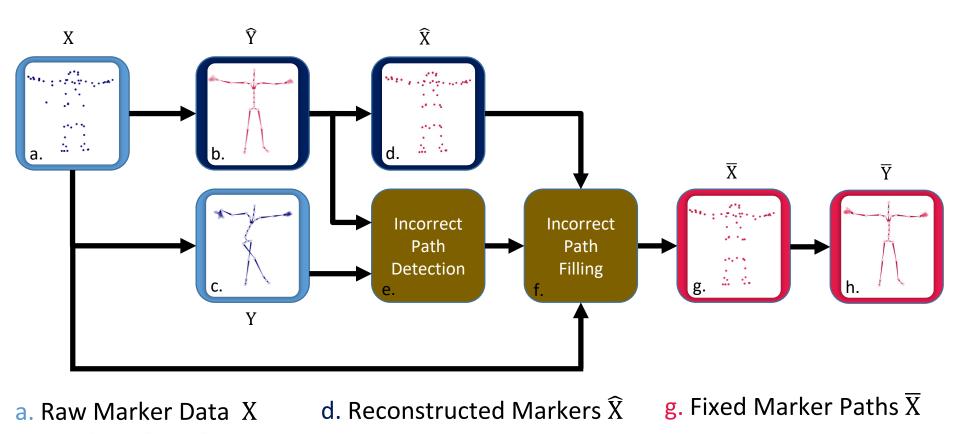
Adated I WY ODCAMP FRipped line

- Markers often have erroneous gaps
 - Occlusion, Swapping, Noise, Trajectory Errors
- Erroneous gaps require MOCAP artist cleanup
 - O Time and Expertise
 - Bottleneck for production

Solutions

Marker Level Solutions

- Solve markers individually
- Marker PCA [Liu and McMillan 2006; Federolf 2013; Gløersen and Federolf 2016]
- Data-driven [Baumann et al.2011; Hsu et al.2004; Wang et al.2014; Zhang and van de Panne 2018; Kucherenko et al. 2018]
- Doesn't take into account kinematic validity


Solutions

Kinematic Level Solutions

- Solve directly
- Kinematically valid, robust to noise
- Commercial Solvers: [Vicon Software]
- Data-driven: [Ren et al.2005; Kim and Rehg 2008; Shen et al.2012; Fragkiadaki et al.2015; Mall et al. 2017; Holden 2018]
- Hard to integrate \rightarrow Marker paths are gone

Our Solution

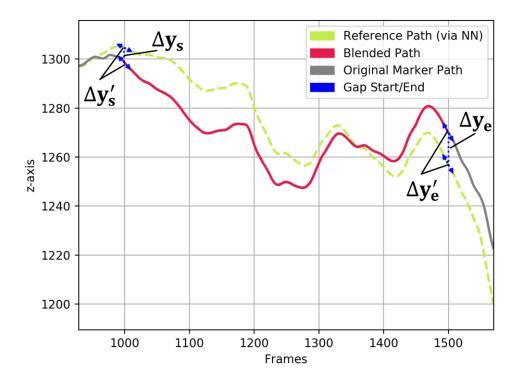
b. [Holden 2018]* Solver \widehat{Y} e. Incorrect Path Detection h. Final Kinematic Solution \overline{Y}

c. Commercial Kinematic Solution Y f. Incorrect Path Filling

Solution: Marker Reconstruction

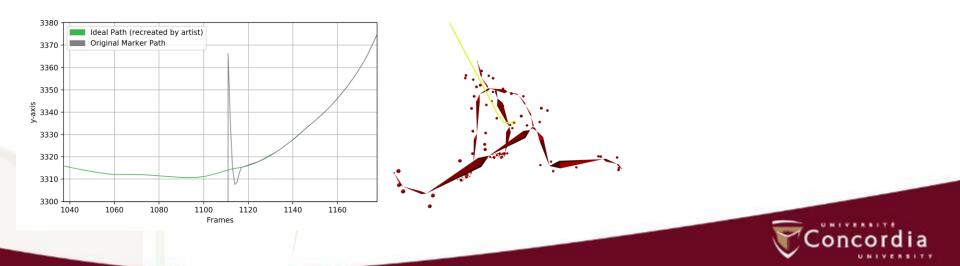
 \bullet Reconstruct markers from \widehat{Y} using LBS

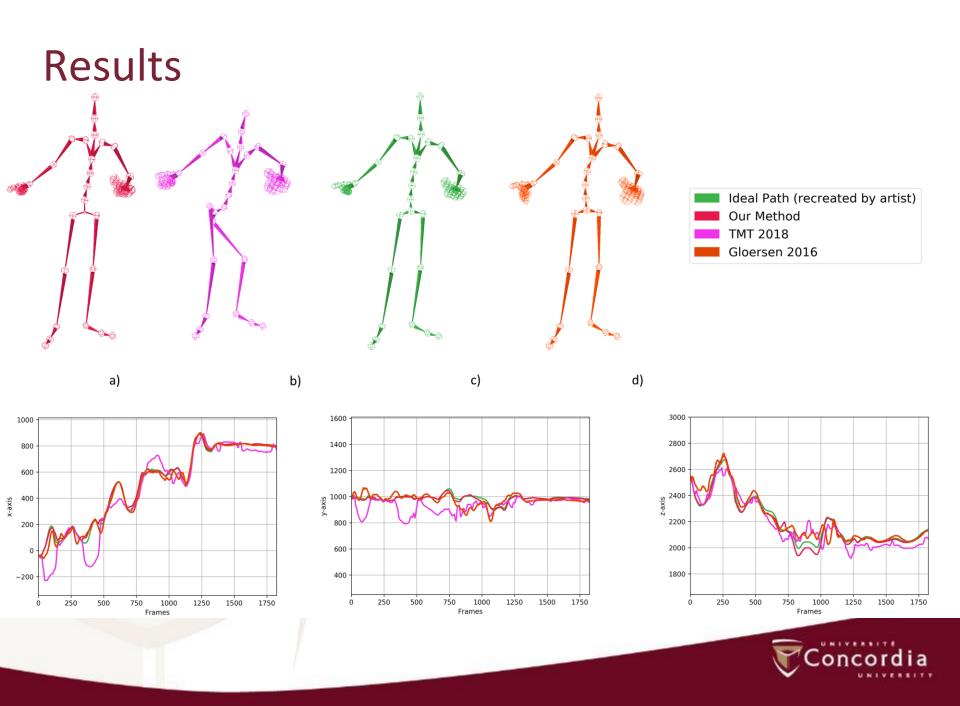
$$LBS(\hat{\mathbf{Y}}, \mathbf{Z}) = \sum_{i=0}^{j} \mathbf{w}_{i} \odot (\hat{\mathbf{Y}}_{i} \otimes \mathbf{Z}_{i})$$


- New markers coined $\widehat{\mathbf{X}}$
 - $\,\circ\,$ Marker representation of $\widehat{\mathbf{Y}}$ kinematic solution
 - "Clean" set of markers
- Issues:
 - Missing small detail
 - Offset from original paths X

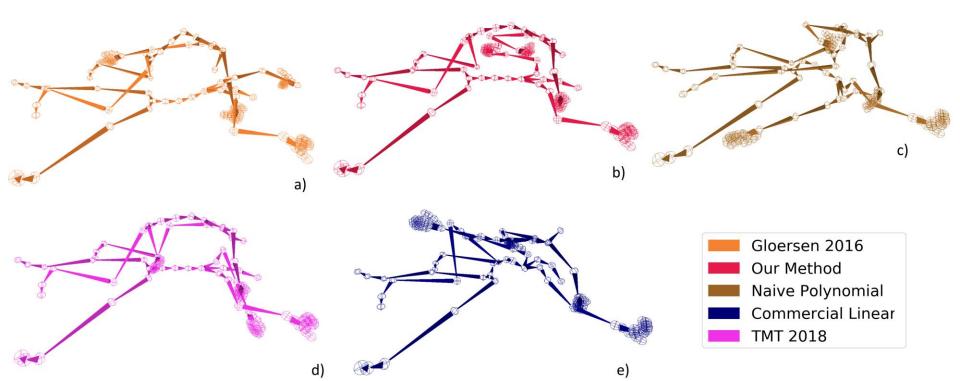
Solution: Gap Filling

Fix Erroneous Frames in X using $\hat{\mathbf{X}}$

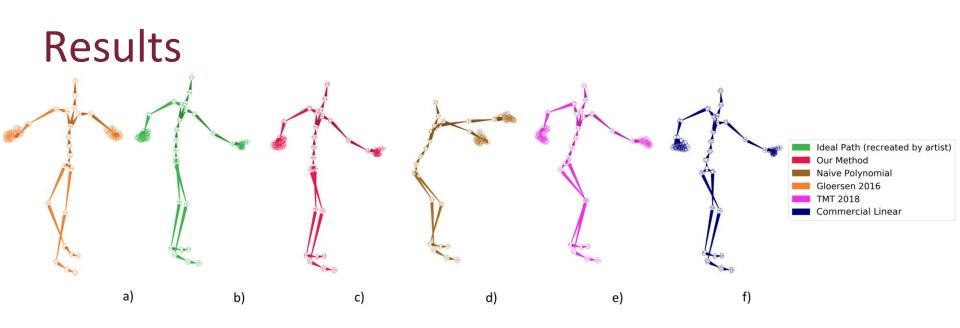

- Get Δy_s , $\Delta y'_s$ and Δy_e , $\Delta y'_e$
- Fit degree 5 polynomial
- Subtract polynomial from original path



Solution: Gap Filling


Handle Degenerate Cases

- Pad start/end frames
- Search for best start/end frames for gaps
- Clamp velocity differences



Results

Method	$\Delta_{\mathbf{pos}}$	$\Delta_{\mathbf{rot}}$
Original	1.841	35.220
Naive Polynomial	10.678	42.93
Commerical	1.053	22.101
Gloersen 2016	0.716	23.827
TMT 2018	0.603	8.038
Holden 2018	1.337	19.604
Ours	0.288	4.727

Results

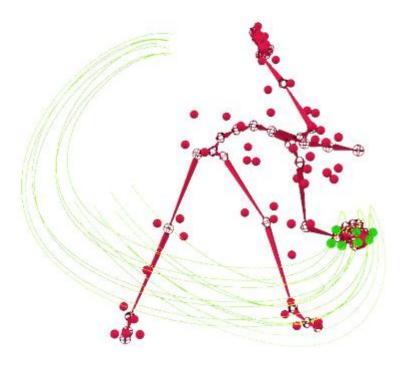
TMT 2018
Our Method
Naive Polynomial
Commercial Linear
Gloersen 2016
Ideal Path (recreated by artist)

Results

• Performance metrics on 10,920 frames of animation at 120FPS

Method	FPS	Time (%)
NN Preprocessing	4029	2
NN Evaluation	1339	6
Filtering	5527	1
IK Retargeting	108	74
Marker Reconstruction	2278	4
Gap Detection	10749	1
Gap Preprocessing	904	9
Marker Filling	2620	3
Total	81	100

Future


• Limitations:

- Depends on performance of robust kinematic solver
- Degree 5 polynomial
- Ambiguous results when large number of markers missing

• Future work:

- Use different kinematic solver
- Use different IK process
- Improve on blending \rightarrow interialization?
- Integrate with markerless system

Graphics@Concospia

Appendix: Improved Kinematic Solver

- Based on [Holden 2018]
- Improve kinematic solver to remove issues such as foot sliding
- Augment dataset using local perturbations
 - Sampled on entire dataset of training data
- Increase correlations between missing markers

Appendix: Erroneous Interval Detection

- Compare kinematic solutions: Positions and Rotation
- Check against threshold
 - Positions \rightarrow 10cm max
 - \circ Rotation \rightarrow 30 degrees max
- Determine erroneous markers

Appendix: Erroneous Interval Detection

Algorithm 1 Given two kinematic solutions, an erroneous one and a clean one, determine the set of missing markers paths

Function *DetectBad* ($\mathbf{Y} \in \mathbb{R}^{n \times j \times 3 \times 4}, \hat{\mathbf{Y}} \in \mathbb{R}^{n \times j \times 3 \times 4}$) // Get differences between two kinematic solutions $\Delta \mathbf{P} \in \mathbb{R}^{n \times j} \leftarrow ||\hat{\mathbf{Y}} - \mathbf{Y}||$ $\Delta \mathbf{R} \in \mathbb{R}^{n \times j} \leftarrow \text{Angle}(\hat{\mathbf{Y}}\mathbf{Y}^{\top})$ // Get joints surpassing allowed threshold $\mathbf{J} \in (0, 1)^{n \times j} \leftarrow \begin{cases} 1, & \text{if } \Delta \mathbf{P} - \Delta \mathbf{P}_{\max} >= 0\\ 1, & \text{or } \Delta \mathbf{R} - \Delta \mathbf{R}_{\max} >= 0\\ 0, & \text{otherwise} \end{cases}$

// Get markers associated with joints surpassing threshold

$$\hat{\mathbf{w}} \in (0,1)^{m \times j} \leftarrow \begin{cases} 1, & \text{if } \mathbf{w} > 0\\ 0, & \text{otherwise} \end{cases}$$
$$\mathbf{M} \in (0,1)^{n \times m} \leftarrow \mathbf{J} \, \hat{\mathbf{w}}$$
$$\textbf{return } \mathbf{M}$$
End

Appendix: Gap Filling

Algorithm 2 Given a gap in marker data, fill the gap by referring to a reference marker path

 $\begin{aligned} & \text{Function } GapFill \, (\mathbf{X} \in \mathbb{R}^{n \times m \times 3}, \hat{\mathbf{X}} \in \mathbb{R}^{n \times m \times 3}, \mathbf{M} \in \mathbb{N}^{g \times 3}) \\ & \text{ // Copy over marker paths } \\ & \bar{\mathbf{X}} \in \mathbb{R}^{n \times m \times 3} \leftarrow \mathbf{X} \\ & \text{ // Loop over all gaps in a clip } \\ & \text{ for } \mathbf{i} \dots \mathbf{g} \text{ do } \\ & \text{ // Get start, end and marker indices } \\ & s, e, m \leftarrow \mathbf{M}_{i,1}, \mathbf{M}_{i,2}, \mathbf{M}_{i,3} \\ & \text{ // Get differences in positions } \\ & \Delta \mathbf{y}_s \in \mathbb{R}^3 \leftarrow \begin{cases} \hat{\mathbf{X}}_{s-1}^m - \mathbf{X}_{s-1}^m, & \text{if } s > 1 \\ \hat{\mathbf{X}}_{e+1}^m - \mathbf{X}_{e+1}^m, & \text{if } e < n \\ 0 & \text{ otherwise} \end{cases} \\ & \Delta \mathbf{y}_e \in \mathbb{R}^3 \leftarrow \begin{cases} \hat{\mathbf{X}}_{e+1}^m - \mathbf{X}_{e+1}^m, & \text{if } e < n \\ \hat{\mathbf{X}}_{s-1}^m - \mathbf{X}_{s-1}^m, & \text{if } s > 1 \\ 0 & \text{ otherwise} \end{cases} \end{aligned}$

$$\begin{split} \Delta \mathbf{y}_{s}' \in \mathbb{R}^{3} \leftarrow \begin{cases} \frac{(\hat{X}_{s-1} - \hat{X}_{s-3})}{2} - \frac{(X_{s-1} - X_{s-3})}{2}, & \text{if } s > 1 \\ 0 & \text{otherwise} \end{cases} \\ \Delta \mathbf{y}_{e}' \in \mathbb{R}^{3} \leftarrow \begin{cases} \frac{(\hat{X}_{e+3} - \hat{X}_{e+1})}{2} - \frac{(X_{e+3} - X_{e+1})}{2}, & \text{if } e < n \\ 0 & \text{otherwise} \end{cases} \\ \end{pmatrix} \\ // \text{ Clamp velocity differences} \\ \Delta \mathbf{y}_{s}' \leftarrow \text{AbsClamp}(\Delta \mathbf{y}_{s}', \Delta_{\max}) \\ \Delta \mathbf{y}_{e}' \leftarrow \text{AbsClamp}(\Delta \mathbf{y}_{e}', \Delta_{\max}) \end{cases} \\ // \text{ Fit cubic polynomial using constraints} \\ \mathcal{P} \leftarrow \text{HermiteSpline}(\Delta \mathbf{y}_{s}, \Delta \mathbf{y}_{e}, \Delta \mathbf{y}_{s}', \Delta \mathbf{y}_{e}') \\ // \text{ Subtract polynomial from reference} \\ \bar{X}_{s...e}^{m} \leftarrow \hat{X}_{s...e}^{m} - \mathcal{P}_{s...e} \\ \text{end for} \\ \text{return } \bar{X} \end{split}$$

// Get differences in velocities

End

Conco