
Appearance Controlled Face Texture Generation for Video Game
Characters

Christian Murphy
Concordia University
Montreal, Canada

christiansmurphy@gmail.com

Sudhir Mudur
Concordia University
Montreal, Canada

mudur@encs.concordia.ca

Daniel Holden
Ubisoft La Forge
Montreal, Canada

daniel.holden@ubisoft.com

Marc-André Carbonneau
Ubisoft La Forge
Montreal, Canada

marc-
andre.carbonneau2@ubisoft.com

Donya Ghafourzadeh
École de technologie supérieure

Montreal, Canada
gh.dony@gmail.com

Andre Beauchamp
Ubisoft La Forge
Montreal, Canada

andre.beauchamp@ubisoft.com

Figure 1: Examples of realistic 4096 × 4096 resolution face textures and displacement maps generated from the chosen color
values, face mesh, age, and gender.

ABSTRACT
Manually creating realistic, digital human heads is a difficult and
time-consuming task for artists. While 3D scanners and photogram-
metry allow for quick and automatic reconstruction of heads, find-
ing an actor who fits specific character appearance descriptions
can be difficult. Moreover, modern open-world videogames feature
several thousands of characters that cannot realistically all be cast

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MIG ’20, October 16–18, 2020, Virtual Event, SC, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8171-0/20/10. . . $15.00
https://doi.org/10.1145/3424636.3426898

and scanned. Therefore, researchers are investigating generative
models to create heads fitting a specific character appearance de-
scription. While current methods are able to generate believable
head shapes quite well, generating a corresponding high-resolution
and high-quality texture which respects the character’s appearance
description is not possible using current state of the art methods.

This work presents a method that generates synthetic face tex-
tures under the following constraints: (i) there is no reference pho-
tograph to build the texture, (ii) game artists control the generative
process by providing precise appearance attributes, the face shape,
and the character’s age and gender, and (iii) the texture must be
of adequately high resolution and look believable when applied to
the given face shape. Our method builds upon earlier deep learn-
ing approaches addressing similar problems. We propose several
key additions to these methods to be able to use them in our con-
text, specifically for artist control and small training data. In spite

https://doi.org/10.1145/3424636.3426898

MIG ’20, October 16–18, 2020, Virtual Event, SC, USA Murphy, Christian. et al

of training with a limited amount of training data, just over 100
samples, our model produces realistic textures which comply to a
diverse range of skin, hair, lip and iris colors specified through our
intuitive description format and augmentation thereof.

CCS CONCEPTS
• Computing methodologies→ Texturing.

KEYWORDS
face texture generation, artist controlled character creation, image-
to-image translation, fine facial features

ACM Reference Format:
Christian Murphy, Sudhir Mudur, Daniel Holden, Marc-André Carbonneau,
Donya Ghafourzadeh, and Andre Beauchamp. 2020. Appearance Controlled
Face Texture Generation for Video Game Characters. In Motion, Interaction
and Games (MIG ’20), October 16–18, 2020, Virtual Event, SC, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3424636.3426898

1 INTRODUCTION
Modern video games often contain character generation systems
which the player can use to create their own avatar and for designers
to generate additional non-player-controlled characters. However,
key characters may require unique appearances which are too
complex or detailed to be created using these systems. Instead, the
appearance of these important characters is either created by hand,
requiring a vast amount of work, or a real life actor who matches
the appearance must be found and consent obtained for them to be
3D scanned - a task that can often be difficult and expensive.

With games evolving to include more and more characters with
distinctive roles and larger crowd sizes, new ways of generating
characters are being explored to cut down on the amount of effort
currently required by the creation process. Using multiples of the
same artist created characters in crowds or for various roles is a
simple way to scale up game size without increasing artist work-
load, however, immersion breaks can happen for the player if they
detect a “clone” [Oxspring et al. 2013]. McDonnel et al. [2009] show
that using different face textures and face geometry are two of
the most effective techniques for disguising clones, but creating
these variations are very time consuming when using traditional
methods. Generative techniques for facial geometry have matured
considerably [Egger et al. 2019] while the generation of high quality
face textures has proven to be much more difficult. Therefore, the
application of generative deep learning techniques to face texture
generation has been receiving a lot of attention in recent years.

While current techniques focus either on unconditioned random
generation from noise or generation of specific faces from photo-
graphic input, our goal is to generate realistic and high resolution
textures guided by artists’ choices. These include age and gender,
various appearance attributes, and a face shape generated by the
method of Ghafourzadeh et al. [2020]. The face shape condition is
important to include so that the network can generate a texture
and displacement map which will look natural once applied to the
face shape.

Our artists designed the appearance description to include: skin
color, hair color, iris color, lip color, and facial hair color and style
to generate the texture and displacement map from. As there is

no photograph reference to base the texture upon, our problem is
highly under-constrained and so the generator needs to precisely
and accurately create a large amount of detail not provided by the
input. Achieving this level of detail is particularly difficult with
small training datasets such as the one we have available for this
work. It consists of just 126 samples compiled from scans used
in recent game productions. Our dataset has already taken years
to create from scanning consenting individuals of different ages,
ethnic backgrounds, and appearances, so enlarging it by a large
factor is not feasible.

Our solution starts by framing the problem as an image-to-image
translation problem since this has been shown to have very good
results with small datasets [Isola et al. 2017]. Image-to-image trans-
lation is based off the presumption that the location of the pixels
in the input and output images are highly correlated, so we mod-
ify our data to take advantage of this paradigm. Our meshes and
descriptions are transformed into a structure which matches our
textures and displacement maps by using a predefined UV layout,
allowing us to use this data for image-to-image translation. We then
modify the Pix2Pix architecture [Isola et al. 2017], a popular image-
to-image translation method, to include recent work in the face
texture generation field. Finally, we conduct several experiments to
validate our method and present our results.

Our main contributions are:

(1) Modification of the Pix2Pix image-to-image translationmethod
by adding symmetric and global consistency to help generate
more realistic textures and displacement maps.

(2) A novel method to transform artistic conditions into an ap-
pearance attribute mapwhich artists can easily use to control
the appearance of generated textures.

(3) A simple data augmentation strategy to strengthen the net-
work’s understanding of the connection between appearance
description inputs and texture outputs, enabling the gener-
ation of diverse face textures even with a small and biased
dataset.

2 RELATEDWORKS
Our method builds upon recent deep-learning solutions created in
the image-to-image translation, photograph-to-texture completion,
face texture and face image generation fields. Below, we briefly
review earlier work on these topics.

2.1 Image-to-Image Translation
Isola et al. [2017] generate realistic, synthetic images by inputting
semantic labeled images to a U-Net architecture [Ronneberger et al.
2015] with dropout added. The dropout adds noise to the upsam-
pling layers, thus making the network stochastic. Their generator
is trained by combining L1 pixel-wise loss and discriminator loss
so that realistic outputs can be generated even for small datasets.
Their PatchGAN discriminator is trained on input-output pairs so
that it can also learn the meanings of the semantic labels. Their
combined network architecture and training method is commonly
referred to as Pix2Pix.

Wang et al. [2018] modify Pix2Pix to be better suited for high
resolution images, leading to the name “Pix2PixHD”. They add a

https://doi.org/10.1145/3424636.3426898

Appearance Controlled Face Texture Generation for Video Game Characters MIG ’20, October 16–18, 2020, Virtual Event, SC, USA

Figure 2: Our solution transfers 3D shape and basic appearance attributes into the same UV format as the target textures and
displacement maps so that image-to-image translation can be used. An automated process simulates the artist controls by
transforming ground truth textures into a basic appearance representation to use as network input. Our network is trained
with pixel-wise L1 loss and discriminator loss of multiple different sized patches which we show with early training results.

second generator which learns to upsample the output of the gener-
ator used in [Isola et al. 2017] and also add two more discriminators
which work on different subsampled versions of the output. The
extra discriminators help increase global consistency and sharpen
details.

Park et al. [2019] create learned modulation parameters in the
normalization layers to preserve semantic information, which lets
them achieve good quality results without requiring an encoder in
their architecture. They show large improvements over Pix2PixHD
[Wang et al. 2018] on large datasets with widely varying image con-
tent, however, improvements are modest in problems with smaller
and more focused data sets (e.g. Cityscapes [Cordts et al. 2016]).

2.2 Photograph-to-Texture Completion
Occlusion is one of the main problems when transferring pho-
tographs to face textures. Therefore, much work has been focused
on how to best fill in their unknown regions. Saito et al. [2017]
complete textures by analyzing the known parts of the texture and
finding its relation to textures in a database to infer what the rest
of the texture should be. A similar method is done by Dessein et
al. [2015] where they fill in occluded regions with similar known
textures and then perform Poisson blending of the edges. Using
image completion methods not specific to face textures, like the
work by Iizuka et al. [2017], has also been suggested.

Qu et al. [2019] use face hallucination on textures to fill in the
occluded regions. The GANFIT method by Gecer et al. [2019b]
deals with occlusion by using the photograph as a guide for a face
texture generator instead of filling in a texture after the transfer

process. Deng et al. [2018] first use the U-Net [Ronneberger et al.
2015] architecture for identity preserved face texture completion
by using the loss from a pre-trained classification network.

Yamaguchi et al. [2018] also use the U-Net architecture [Ron-
neberger et al. 2015] for texture completion, but they introduce
a modification to the network which they call ”Feature Flipping”,
where the mirror reflection of the output tensor at each layer is
appended to itself to give their textures better symmetry. We add
this modification to the Pix2Pix network since it accomplishes the
same goal of identity preservation as [Deng et al. 2018] without
needing a pre-trained network.

2.3 Face Texture Generation
The 3DMMmethod by Blanz and Vetter [1999] is a seminal work in
the face mesh and texture generation fields through the use of PCA.
Booth et al. [2018] use an updated version of the 3DMM method on
10,000 face scans, yet their generated textures still have the same
issues as they did years prior: although the textures look natural
for the mesh, they are far too blurry to use for modern applications.
Sucontphunt et al. [2010] create more realistic textures by searching
their texture database using descriptive user inputs, like a sketch,
and then performing a linear combination of the closest matches.
However, performing linear combinations of images destroys a lot
of important micro-details in the skin and hair, again resulting in a
smooth texture.

Slossberg et al. [2018] are the first to confront this problem by
using a GAN to synthesize a texture, and then use the texture to
estimate a face model for it using the 3DMM method. Gecer et al.

MIG ’20, October 16–18, 2020, Virtual Event, SC, USA Murphy, Christian. et al

[2019a] increase the quality of deep learning texture generation by
using a “Trunk-Branch” modification of the Progressive Growing of
GANs method by Karras et al. [2017]. The modification allows them
to create a texture, normal map, and face shape at the same time
so that each of the maps has detailed, corresponding features. Li et
al. [2020] improved on previous methods by allowing anatomical
and physical attributes along with gender and age to be used as
conditions for a mesh and texture generator, but these conditions
do not include appearance attributes required by artists such as
skin or hair color.

Some issues may arise while creating a 3D face dataset, and if
not dealt with, the incorrect data may find its way into generated
textures through the discriminator learning that real textures have
these issues. Shamai et al. [2019] work to fix this issue by simply
masking the loss from known corrupted regions, however this still
requires someone to search through the database to find and mask
off all of the corrupted data.

2.4 Face Image Generation
Generative models designed for face image generation use network
architectures and training methods which could be applied to face
texture generation as well. Proof of this is shown in UV-GAN [Deng
et al. 2018] which uses a discrimination method originating in the
work by Li et al. [2017] for filling unknown regions of face images.

Artists could usewritten descriptions for generating face textures
by re-purposing the FTGAN by Chen et al. [2019]. The LinesTo-
FacePhoto method by Li et al. [2019] is able to create realistic faces
fitting a sketch description by adding self-attention to the Pix2Pix
architecture. This method could provide a way for artists to input
conditions to a generator network, but the time it would take for
artists to create the sketches by hand is long and it would not be
useful for generating textures with specific color values.

StyleGAN [Karras et al. 2019] is able to generate very realistic
face images from two input image controls. Generated face images
could then be used in the facial reconstruction method Sela et al.
[2017] to create a high quality synthetic mesh and texture. However,
this still raises concerns over consent from the people in the con-
trol images since we require consent from everyone we scan even
though their data is modified afterwards to preserve anonymity.

3 METHODOLOGY
3.1 Overview
The main goal of our work is to create a system which game artists
can use to generate high quality face textures which have the ap-
pearance and fine details they desire, while also looking natural
when applied to a specified face mesh. The output for our deep-
learning generator network is therefore a texture and displacement
map, and the input conditions for the network are an artist’s de-
scription of the character’s appearance, a face mesh, and the gender
and age of the character. The steps we take to be able to use these
conditions within the image-to-image translation framework and
the training of our network is presented in Figure 2. In the following
sections we first describe our model, followed by our training proce-
dure, our input and output parameterization, and our augmentation
method.

3.2 Model Architecture
We base our model on Pix2Pix [Isola et al. 2017], which is a U-Net
architecture [Ronneberger et al. 2015] with 50% dropout in some
decoder layers to introduce noise to the network. We modify the
network for face texture generation by including Feature Flipping at
each layer as in [Yamaguchi et al. 2018]. This is implemented in our
network by creating a Mirror Block with a forward operation which
returns a concatenation of the input and its mirrored reflection. The
Mirror Blocks are placed after each layer in the network except the
final. In the decoder, the Mirror Blocks are placed after the dropout
operations to keep information loss symmetrical. Each individual
modification to Pix2Pix [Isola et al. 2017] and our complete network
architecture can be viewed in Figure 3.

Figure 3: Our networkmodifies Pix2Pix [Isola et al. 2017] by
adding the mirror reflection of tensors, called Feature Flip-
ping, at each layer and branched output layers for the tex-
ture and displacement map.

We also add a branched output layer as in [Gecer et al. 2019a]
to provide separate output layers for the texture and displacement
map. Gecer et al. [2019b] propose that this helps the model better
handle multiple types of outputs while still keeping them coherent
with each other. We initialize a Branch Block by specifying the
amount of 2D transpose convolutional layers to be created, which
is two in our case. The Branch Block feeds the same tensor to each
of the layers individually, and the output of each is concatenated
and returned.

Three PatchGAN discriminators trained on different resolutions
of the outputs are used as described by Wang et al. [2018]. We
include three discriminators rather than one because face textures
should have globally coherent and well defined details. The second
and third discriminator process patches of 50% and 25% bilinearly
subsampled versions of the data respectively.

3.3 Training
The generator G maps x {shape, appearance, age, gender} and
dropout noise z to produce ŷ {texture,displacement map}. L1 loss be-
tween ŷ and the target output y is used along with the Binary Cross
Entropy loss of three PatchGAN discriminators, D1,D2,D3, to train
G. Our complete training objective with multiscale discriminators

Appearance Controlled Face Texture Generation for Video Game Characters MIG ’20, October 16–18, 2020, Virtual Event, SC, USA

and L1 loss on the conditional generator G is defined as:

G∗ = (min
G

max
D1,D2,D3

∑
k=1,2,3

LcGAN (G,Dk)) + λLL1(G) (1)

Where L1 loss on a conditional GAN G is defined as:

LL1(G) = Ex,y,z [∥y −G(x , z)∥1] (2)

And the loss from a discriminator D is:
LcGAN (G,D) = Ex,y [logD(x ,y)]+

Ex,z [log(1 − D(x ,G(x , z))]
(3)

With an adversarial min-max objective of:

G∗ = min
G

max
D

LcGAN (G,D) (4)

Each network uses normal weight initialization [Glorot and Ben-
gio 2010] and all are trained using the Adam optimizer [Kingma and
Ba 2014] with a learning rate of 0.0002 and momentum parameters
β1 at 0.5 and β2 at 0.999. The L1 loss weight λ is set to 100. The loss
used to train the discriminators is halved to train these networks
slower than the generator, as is done in Pix2Pix [Isola et al. 2017].
The networks are trained for 100K steps with a batch size of 8 using
an Nvidia RTX 2080TI, taking roughly 30 hours. The textures had
imperceptible changes when trained for any longer. At inference
time, a texture and displacement map is produced in 5 milliseconds
using the GPU.

3.4 Feature Map
To give our artists control over the appearance, we need the input
of the network to have more specific information given to it rather
than simple one-hot encoded attributes such as “blonde hair” or
“green eyes”. Exact color values for each attribute could be given
as a simple vector, but the proper use of these values would likely
be difficult to learn without any context. Therefore, we encode the
appearance information in a meaningful format in the form of a UV
map. This allows the network to quickly and easily understand the
spatial relationship between appearance conditions through the use
of image-to-image translation. To be able to do this, we first created
a Segmentation Map which defines where certain features appear
in the textures and then fill these regions with the appearance
information of each sample. These segmented regions include: hair,
eyebrows, iris, lips, and facial hair locations (above lips, chin, lower
cheeks and neck).

We created our Segmentation Map by tracing over a face texture
which included hair at all of the possible facial hair locations, and
then expanded the eyebrow region so that it would cover the loca-
tion of the eyebrows for any texture. This had to be done because
the eyebrows had the most spatial variance compared to the other
segmented regions since its location depends on the sample’s brow
bone structure.

Color valueswere then taken directly from the textures to be used
as the desired attribute color for that region in the Segmentation
Map. For example, a sample’s skin color is chosen by simply using
the value of the pixel in the middle of the forehead on the texture.
This chosen skin color is then used to replace all of the pixel values
in the skin region of the Segmentation Map. Similarly, we identified
a specific location in each segmented region so that the process

could be done automatically for our entire dataset. We also show
how this process works in Figure 4.

Before creating the Feature Maps, we went through the dataset
and marked down the facial hair style of each sample so that we
could use this information during the creation process. Based on
the facial hair style, we know whether or not to use the colors
chosen to represent the beard, moustache, and goatee regions while
creating the Feature Map. In the case of a sample having stubble,
we fill in all facial hair regions with a chosen grey color.

Since the generator is not globally aware of its appearance con-
ditions but still has to place some skin in hair filled regions, we also
include the desired skin color in hair-filled regions. This is done
by using the skin color instead of the hair color for every fourth
pixel when filling in these regions. However, if the participant has
stubble, then the hair and skin color is alternated after every pixel
so that the generator would learn the difference between a grey
beard condition and a grey stubble condition.

Figure 4: Pixels from the texture are automatically selected
to override the pixels in each region of the Segmentation
Map, resulting in a Feature Map.

Figure 5: The Feature Maps created from the textures of our
test set.

MIG ’20, October 16–18, 2020, Virtual Event, SC, USA Murphy, Christian. et al

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MIG ’20, October 16–18, 2020, Virtual Event, SC, USA Murphy, Christian. et al

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 7: Our trained SuperResolution network performs very well in comparison to bicubic upsampling for enhancing the
facial features of this held-out texture, especially on the wrinkles, hair, freckles, and eyes.

This system allows artists to embed their desired appearance
attributes into a Feature Map quickly and easily since they only
have to specify a minimal amount of colors, only one for each
region, and a facial hair style. The Feature Map is then made near
instantly through our algorithm, allowing for it to be input to the
generator quickly so that the user receives visual feedback from
their choices in realtime.

3.5 Data Augmentation
When training with a limited dataset, networks tend to quickly
memorize the expected output for each input rather than learning to
generalize for the problem. We augment our data during training to
prevent memorization so that the network can learn the conditions
better by introducing a 15% chance to apply data augmentation.

Input Generated Texture
Feature Map No-Augmentation Augmentation

Figure 6: Regions of a real Feature Map were replaced by
an unnatural value and given to two identical networks, but
one is trainedwith augmentation and the otherwithout. Our
augmentation method makes the network generate a tex-
ture based on any given value.

Three scalars between 0 and 1 are randomly sampled from a uniform
distribution, one for each channel in the images. Multiplying the
channels in the FeatureMap and texture by the same scalars changes
the images in the same way since the Feature Map was created from
the values in the texture.

Even this simple data augmentation method greatly helps avoid
over-fitting on such a small dataset. The effect that augmentation
has on the network is presented in Figure 6 by comparing the tex-
tures generated from synthetic inputs in the same network trained
with and without augmentation. Instead of producing textures with
noise in the locations where unnatural color values not attainable
through augmentation are present, these colors are actually used
when generating the textures, showing that the network under-
stands the Feature Map condition better.

3.6 SuperResolution
We use a trained SuperResolution network as a post-processing
step on the generated texture and displacement map once the artist
has chosen their final appearance description values. The network
performs a ×4 supersampling of the initial 1024 × 1024 resolution
images to have a finalized 4096 × 4096 resolution texture and dis-
placement map ready for production use. Many recent works such
as [Li et al. 2020; Wang et al. 2018] achieve high resolution outputs
by training a SuperResolution network at the same time as the
generator. However, we train the SuperResolution network sepa-
rately to be able to use techniques which would be unavailable to
us if it was trained at the same time as the generator network. This
includes the ability to train the network using small, randomly cho-
sen patches of data and to include data from larger, public datasets
of similar domains like face images.

We train the MSRResNet architecture used as the baseline model
for the AIM 2019 SuperResolution Challenge [2019] following the
training methodology by Ledig et al. [2017] to supersample 64 × 64
resolution patches of our textures/displacement map pairs and face
images from the Chicago Face Database [Ma et al. 2015] to 256×256
resolution. This face image dataset was used since its data acqui-
sition method was very similar to ours, being that all of the face
images were taken with a standardized camera position, lighting

6

Figure 6: Regions of a real Feature Map were replaced by
an unnatural value and given to two identical networks, but
one is trainedwith augmentation and the otherwithout. Our
augmentation method makes the network generate a tex-
ture based on any given value.

This system allows artists to embed their desired appearance
attributes into a Feature Map quickly and easily since they only
have to specify a minimal amount of colors, only one for each
region, and a facial hair style. The Feature Map is then made near
instantly through our algorithm, allowing for it to be input to the
generator quickly so that the user receives visual feedback from
their choices in realtime.

3.5 Data Augmentation
When training with a limited dataset, networks tend to quickly
memorize the expected output for each input rather than learning to
generalize for the problem. We augment our data during training to
prevent memorization so that the network can learn the conditions
better by introducing a 15% chance to apply data augmentation.

Three scalars between 0 and 1 are randomly sampled from a uniform
distribution, one for each channel in the images. Multiplying the
channels in the FeatureMap and texture by the same scalars changes
the images in the same way since the Feature Map was created from
the values in the texture.

Even this simple data augmentation method greatly helps avoid
over-fitting on such a small dataset. The effect that augmentation
has on the network is presented in Figure 6 by comparing the tex-
tures generated from synthetic inputs in the same network trained
with and without augmentation. Instead of producing textures with
noise in the locations where unnatural color values not attainable
through augmentation are present, these colors are actually used
when generating the textures, showing that the network under-
stands the Feature Map condition better.

3.6 SuperResolution
We use a trained SuperResolution network as a post-processing
step on the generated texture and displacement map once the artist
has chosen their final appearance description values. The network
performs a ×4 supersampling of the initial 1024 × 1024 resolution
images to have a finalized 4096 × 4096 resolution texture and dis-
placement map ready for production use. Many recent works such
as [Li et al. 2020; Wang et al. 2018] achieve high resolution outputs
by training a SuperResolution network at the same time as the
generator. However, we train the SuperResolution network sepa-
rately to be able to use techniques which would be unavailable to
us if it was trained at the same time as the generator network. This
includes the ability to train the network using small, randomly cho-
sen patches of data and to include data from larger, public datasets
of similar domains like face images.

We train the MSRResNet architecture used as the baseline model
for the AIM 2019 SuperResolution Challenge [2019] following the
training methodology by Ledig et al. [2017] to supersample 64 × 64
resolution patches of our textures/displacement map pairs and face
images from the Chicago Face Database [Ma et al. 2015] to 256×256
resolution. This face image dataset was used since its data acqui-
sition method was very similar to ours, being that all of the face
images were taken with a standardized camera position, lighting

Figure 7: Our trained SuperResolution network performs very well in comparison to bicubic upsampling for enhancing the
facial features of this held-out texture, especially on the wrinkles, hair, freckles, and eyes.

Appearance Controlled Face Texture Generation for Video Game Characters MIG ’20, October 16–18, 2020, Virtual Event, SC, USA

Figure 8: From just a few selected colors, personal attributes, and a provided mesh, our generator is able to synthesize new
textures and displacement maps which have a high resemblance to our diverse held-out test set, suggesting that our network
generates realistic and accurate appearances for unseen data.

setup, subject position and facial expression. Patches were chosen
randomly from ground truth data, billinearly downsampled to 25%
resolution and had a 50% chance to apply either horizontal or verti-
cal flipping. We alternate the use of texture/displacement map pairs
and face images after each training step and use two PatchGAN
discriminators by Isola et al. [2017], where one discriminates the
texture/displacement map pair patches while the other discrimi-
nates the face image patches. The performance of our model can
be viewed in Figure 7.

Table 1: The demographics of our dataset.

Ethnicity #
Caucasian 78
East Asian 17
Black 10
Hispanic 13
South Asian 8

Age #
20-29 37
30-39 34
40-49 23
50-59 12
60-69 13
70+ 7

Gender #
Female 62
Male 64

4 DATASET
For 126 people, we record the demographics about each person
and reconstruct a high quality mesh, texture, and displacement
map using our own proprietary photogrammetry technology. We
use terms described by Raj Bhopal [2004] to describe the sample’s
ethnicity, and show our dataset’s ethnicity, age range, and gender
figures in Table 1. We do not use the ethnicity as a condition for our
network and instead only record the ethnicity to understand the
bias in our dataset, which, as shown in Table 1, is heavily biased
toward Caucasian samples.

Our meshes, textures, and displacement maps all have the same
topology and UV format created using the R3DS Wrap commercial
solution for simplifying head reconstructions. Our test set was then
created through a random stratified sampling from each ethnic
group to create a test set with 10 samples which includes at least
one sample from each ethnicity and nearly every age range. These

samples were held out during training. Figure 8 shows the ground
truth test set textures and displacement maps applied to their cor-
responding mesh. The Feature Maps created from these test set
textures can be viewed in Figure 5.

4.1 Shape Map
We represent our mesh data as a Shape Map by following the
method described by Gecer et al. [2019a] to encode the vertex posi-
tions in image space. Using a ShapeMap instead of themesh directly
makes the 3D shape be interpreted better by convolutional neural
networks. The Shape Map is made by normalizing the complete set
of aligned meshes and then transferring their vertex values into the
UV map format. Triangle interiors are filled in using barycentric
coordinates so that each pixel represents a point in 3D space. This
process is shown in Figure 9.

5 EVALUATION
In this section we present an evaluation of our method including a
presentation of our test set results, an ablation study of our proposed
methods, and an analysis of the trained model.

Mesh Encoded Vertices Filled Triangles

Figure 9: Shape Maps are made by encoding the 3D position
of each vertex in the mesh into image space using its UV
format and then filling the triangle interiors.

MIG ’20, October 16–18, 2020, Virtual Event, SC, USA Murphy, Christian. et al

Shape, Gender, Age Feature Map Augmentation Ground Truth Nearest Sample

Figure 10: Generated textures from each step in our ablation study. Textures lack consistency without the use of a Feature
Map, and unseen input values are better utilized after training with augmentation. Synthesized textures have appearances far
from the closest texture in the training set based on RMSE.

5.1 Results
The descriptive conditions used by our generative model allows for
textures with appearances similar to ground truth to be produced.
By comparing the appearance of the given meshes with the ground
truth and generated textures and displacement applied to them,
shown in Figure 8, we see that the generated textures have a very
similar appearance to ground truth because of the skin, eye, lip,
and hair colors included in the Feature Map. Facial hair details like
stubble enhances the level of similarity even more, suggesting that
artists will have enough freedom in input appearance options to
make textures very close to the appearance they desire. We also
provide a more detailed look at the quality of results we obtain in
Figure 1.

5.2 Ablation of Methods
We show how three of our sample’s texture predictions change
during an ablation study of our methods in Figure 10. The study
begins by training our network using the Shape Map, age, and
gender conditions to generate the texture and displacement map.
This is similar to other works [Gecer et al. 2019a; Li et al. 2020]
which primarily correlate face shape to texture appearance. How-
ever, given our requirement of artist control, this is not a viable
method to synthesize textures with a desired appearance. Based on
these results, we also believe that using only these conditions for
generating textures would require a much larger dataset than ours
to obtain quality results, which as explained earlier is very time
consuming to create.

We retrained our network with the Feature Map included, shown
in column 2. This new condition addresses both of the aforemen-
tioned problems very well. It helps make a much more cohesive
textures similar to the ground truth appearances in column 4, but
they do not exactly match the given Feature Map values. We trained
our network once more to include our data augmentation method,
shown in column 3. Using this augmentation method helped the
network create textures with skin, hair, lip, and eye colors which
nearly matches those in the held out test set. In the last column of
Figure 10, we include the training set sample with the lowest RMSE
distance to the final generated texture to show that our trained
model is synthesizing unique textures, not simply modifying a
sample from the training data.

5.3 Trained Model Analysis
To visualize the performance of our final fully trained model, we
perform a sensitivity analysis on the Feature Map and Shape Map
conditions. This is done by taking the inputs of a sample, changing
one, and analyzing the resulting change. We modify the input to
the network by interpolating between one of a sample’s inputs, x0,
and the same type of input from another sample, x1, to create a
new input x̂ = αx1 + (1 − α)x0, where α is the interpolation factor.
Using interpolation to assess the model also gives the benefit of
simulating the actions an artist might be doing when choosing
Feature Map values and modifying their given mesh.

Feature Map interpolation results are presented in Figure 11 and
Shape Map interpolation results are in Figure 12. Note that the

Appearance Controlled Face Texture Generation for Video Game Characters MIG ’20, October 16–18, 2020, Virtual Event, SC, USA

x0 α = 0 α = .25 α = .5 α = .75 α = 1 x1

Figure 11: Results from the linear interpolation between two Feature maps, x0 and x1, by the value α . The color values should
be changing to match the Feature Map, while the features which depend on shape should be static.

x0 α = 0 α = .25 α = .5 α = .75 α = 1 x1

Figure 12: Results from the linear interpolation between the Shape Maps of two different meshes, x0 and x1, by the value α .
The shape of facial features should change to fit the mesh, but the color of them should be static.

mesh is presented instead of the Shape Map for better visualization
of the differences. Interpolating between Feature Maps shows that
the model uses the condition very well and can generate realistic
textures from input combinations not in the training set. Generated
textures are affected very differently by each input type, showing
that the network has learned a disentangled representation of fa-
cial feature properties. The network has learned how to combine
features which depend on shape with those which depend on the

Feature Map in a natural way, as all of the generated textures are
realistic looking.

Finally, we generated a few meshes with anthropometric mea-
surements outside of our face mesh dataset range using the Part-
based 3DMM by Ghafourzadeh et al. [2020]. The shape maps from
these meshes were input to the trained network along with a vari-
ety of artist created feature maps and the chosen gender and age.

MIG ’20, October 16–18, 2020, Virtual Event, SC, USA Murphy, Christian. et al

Input Feature Map

Generated Texture

Figure 13: Some out-of-distribution Shape and Feature Map
combinations can lead to textures being generated with
checkerboard artifacts and a green tint in skin and lip color.

The results were then ×4 SuperSampled and applied to the orig-
inal mesh, with the resulting renders shown in Figure 14. These
generated textures still met all of the input conditions with a high
level of detail even though the given meshes were far different than
those trained with.

6 LIMITATIONS AND FUTUREWORK
The main limitation we see in the proposed method is in the lack
of facial details like freckles, acne, and wrinkles being generated in
the textures. This likely comes from the combination of not directly
requesting these details in the network input, having discriminators
which are not picking up on the importance of having these details
for discrimination, and from the network lacking the understanding
of how these minute details are related to face shape, age, and
gender.

Detecting these skin details and adding them onto both the
textures and Feature Maps of another sample using image editing
methods like [Clément et al. 2007] could be a way to have the
network train with these details clearly specified in the input. To
have the network better understand how age relates to these skin
details, our data could be passed through the face aging simulation
by Suo et al. [2007] on our younger samples and adding the results
to our dataset with their new simulated age. To learn how gender
relates to skin details, CycleGAN [Zhu et al. 2017] could be trained
to modify a texture to look like it is from the opposite gender so
that the results could be used to augment our dataset. Researching
such dataset augmentation methods would be novel for the face
generation field and could be a promising way for current solutions
to improve their results.

We also show some failure cases in Figure 13 where realistic
Shape and Feature Map inputs were provided. In one case, the
resulting textures had checkerboard artifacts. Also shown is a dark
brown color given in the Feature Map resulting in a green color
tone on the cheeks and lips. The cheeks and lips are often brighter
than the given skin color, so the green color is likely a result of
brightening the brown color given.

It would also be interesting to apply our segmentation based Fea-
ture Map generation method to different 3D models used in games,

such as full body textures and clothing textures. This would be a
first step towards the complex problem of generating a character’s
complete 3D model and texture from a simple artist description.

7 CONCLUSION
In this work, we addressed the problem of generating completely
new, high resolution, natural looking face textures for game charac-
ters given their appearance attributes, face shape, age and gender.
From the ablation studies and sensitivity analysis performed on our
proposed method, we find that our system is a simple and reliable
solution for generating natural looking 4096 × 4096 resolution face
textures and displacement maps from artist inputs - even when
having a relatively small training dataset available to us.

Figure 14: Our network still creates pleasant results even
when given meshes generated far outside of the dataset dis-
tribution.

REFERENCES
Raj Bhopal. 2004. Glossary of terms relating to ethnicity and race: for reflection and

debate. Journal of Epidemiology & Community Health 58, 6 (2004), 441–445.
Volker Blanz and Thomas Vetter. 1999. Amorphable model for the synthesis of 3D faces.

In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques. 187–194.

James Booth, Anastasios Roussos, Allan Ponniah, David Dunaway, and Stefanos
Zafeiriou. 2018. Large scale 3Dmorphable models. International Journal of Computer
Vision 126, 2-4 (2018), 233–254.

Xiang Chen, Lingbo Qing, Xiaohai He, Xiaodong Luo, and Yining Xu. 2019. FTGAN: A
Fully-trained Generative Adversarial Networks for Text to Face Generation. arXiv
preprint arXiv:1904.05729 (2019).

Olivier Clément, Jocelyn Benoit, and Eric Paquette. 2007. Efficient editing of aged object
textures. In Proceedings of the 5th international conference on Computer graphics,
virtual reality, visualisation and interaction in Africa. 151–158.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016. The cityscapes
dataset for semantic urban scene understanding. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 3213–3223.

Jiankang Deng, Shiyang Cheng, Niannan Xue, Yuxiang Zhou, and Stefanos Zafeiriou.
2018. Uv-gan: Adversarial facial uv map completion for pose-invariant face recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 7093–7102.

Arnaud Dessein, William AP Smith, Richard C Wilson, and Edwin R Hancock. 2015.
Example-based modeling of facial texture from deficient data. In Proceedings of the
IEEE International Conference on Computer Vision. 3898–3906.

Bernhard Egger,WilliamAP Smith, Ayush Tewari, StefanieWuhrer, Michael Zollhoefer,
Thabo Beeler, Florian Bernard, Timo Bolkart, Adam Kortylewski, Sami Romdhani,
et al. 2019. 3D Morphable Face Models–Past, Present and Future. arXiv preprint
arXiv:1909.01815 (2019).

Baris Gecer, Alexander Lattas, Stylianos Ploumpis, Jiankang Deng, Athanasios Pa-
paioannou, Stylianos Moschoglou, and Stefanos Zafeiriou. 2019a. Synthesizing
Coupled 3D Face Modalities by Trunk-Branch Generative Adversarial Networks.
arXiv preprint arXiv:1909.02215 (2019).

Appearance Controlled Face Texture Generation for Video Game Characters MIG ’20, October 16–18, 2020, Virtual Event, SC, USA

Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Stefanos Zafeiriou. 2019b. Ganfit:
Generative adversarial network fitting for high fidelity 3d face reconstruction. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
1155–1164.

Donya Ghafourzadeh, Cyrus Rahgoshay, Sahel Fallahdoust, Andre Beauchamp, Adeline
Aubame, Tiberiu Popa, and Eric Paquette. 2020. Part-Based 3D Face Morphable
Model with Anthropometric Local Control. In Graphics Interface.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. 249–256.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2017. Globally and locally
consistent image completion. ACM Transactions on Graphics (ToG) 36, 4 (2017),
1–14.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image
translation with conditional adversarial networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 1125–1134.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive growing
of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196
(2017).

Tero Karras, Samuli Laine, and TimoAila. 2019. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4401–4410.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,
et al. 2017. Photo-realistic single image super-resolution using a generative adver-
sarial network. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4681–4690.

Ruilong Li, Karl Bladin, Yajie Zhao, Chinmay Chinara, Owen Ingraham, Pengda Xiang,
Xinglei Ren, Pratusha Prasad, Bipin Kishore, Jun Xing, et al. 2020. Learning Forma-
tion of Physically-Based Face Attributes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 3410–3419.

Yuhang Li, Xuejin Chen, Feng Wu, and Zheng-Jun Zha. 2019. LinesToFacePhoto:
Face Photo Generation From Lines With Conditional Self-Attention Generative
Adversarial Networks. In Proceedings of the 27th ACM International Conference on
Multimedia. 2323–2331.

Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. 2017. Generative face completion.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
3911–3919.

Debbie S Ma, Joshua Correll, and Bernd Wittenbrink. 2015. The Chicago face database:
A free stimulus set of faces and norming data. Behavior research methods 47, 4
(2015), 1122–1135.

Rachel McDonnell, Michéal Larkin, Benjamín Hernández, Isaac Rudomin, and Carol
O’Sullivan. 2009. Eye-catching crowds: saliency based selective variation. ACM
Transactions on Graphics (TOG) 28, 3 (2009), 1–10.

Sean Oxspring, Ben Kirman, and Oliver Szymanezyk. 2013. Attack on the clones: man-
aging player perceptions of visual variety and believability in video game crowds.
In International Conference on Advances in Computer Entertainment Technology.
Springer, 356–367.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic
image synthesis with spatially-adaptive normalization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2337–2346.

Chengchao Qu, Eduardo Monari, Tobias Schuchert, and Jürgen Beyerer. 2019. Patch-
based facial texture super-resolution by fitting 3D face models. Machine Vision and
Applications 30, 4 (2019), 557–586.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference onMedical
image computing and computer-assisted intervention. Springer, 234–241.

Shunsuke Saito, Lingyu Wei, Liwen Hu, Koki Nagano, and Hao Li. 2017. Photorealistic
facial texture inference using deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 5144–5153.

Matan Sela, Elad Richardson, and Ron Kimmel. 2017. Unrestricted facial geometry
reconstruction using image-to-image translation. In Proceedings of the IEEE Inter-
national Conference on Computer Vision. 1576–1585.

Gil Shamai, Ron Slossberg, and Ron Kimmel. 2019. Synthesizing facial photometries and
corresponding geometries using generative adversarial networks. ACMTransactions
on Multimedia Computing, Communications, and Applications (TOMM) 15, 3s (2019),
1–24.

Ron Slossberg, Gil Shamai, and Ron Kimmel. 2018. High quality facial surface and
texture synthesis via generative adversarial networks. In Proceedings of the European
Conference on Computer Vision (ECCV). 0–0.

Tanasai Sucontphunt, Borom Tunwattanapong, Zhigang Deng, and Ulrich Neumann.
2010. Crafting 3d faces using free form portrait sketching and plausible texture
inference. In Proceedings of Graphics Interface 2010. 209–216.

Jinli Suo, Feng Min, Songchun Zhu, Shiguang Shan, and Xilin Chen. 2007. A multi-
resolution dynamic model for face aging simulation. In 2007 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 1–8.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-resolution image synthesis and semantic manipulation
with conditional gans. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 8798–8807.

Shugo Yamaguchi, Shunsuke Saito, Koki Nagano, Yajie Zhao, Weikai Chen, Kyle Ol-
szewski, Shigeo Morishima, and Hao Li. 2018. High-fidelity facial reflectance and
geometry inference from an unconstrained image. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 1–14.

Kai Zhang, Shuhang Gu, Radu Timofte, Zheng Hui, Xiumei Wang, Xinbo Gao,
Dongliang Xiong, Shuai Liu, Ruipeng Gang, Nan Nan, et al. 2019. Aim 2019 chal-
lenge on constrained super-resolution: Methods and results. In 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW). IEEE, 3565–3574.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings of
the IEEE international conference on computer vision. 2223–2232.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Image-to-Image Translation
	2.2 Photograph-to-Texture Completion
	2.3 Face Texture Generation
	2.4 Face Image Generation

	3 Methodology
	3.1 Overview
	3.2 Model Architecture
	3.3 Training
	3.4 Feature Map
	3.5 Data Augmentation
	3.6 SuperResolution

	4 Dataset
	4.1 Shape Map

	5 Evaluation
	5.1 Results
	5.2 Ablation of Methods
	5.3 Trained Model Analysis

	6 Limitations and Future Work
	7 Conclusion
	References

